a2 United States Patent
Kwok et al.

US009117044B2

US 9,117,044 B2
*Aug. 25, 2015

(10) Patent No.:
(45) Date of Patent:

(54) HIERARCHICAL VERIFICATION OF CLOCK

DOMAIN CROSSINGS
(71) Applicant: Mentor Graphics Corporation,
Wilsonville, OR (US)
(72) Inventors: Ka-Kei Kwok, Saratoga, CA (US);
Priya Viswanathan, Santa Clara, CA
(US); Rojer Raji Sabbagh, Ottawa
(CA); Ramesh Sathianathan,
Sunnyvale, CA (US)
(73) Assignee: Mentor Graphics Corporation,
Wilsonville, OR (US)
(*) Notice: Subject to any disclaimer, the term of this
patent is extended or adjusted under 35
U.S.C. 154(b) by O days.
This patent is subject to a terminal dis-
claimer.
(21) Appl. No.: 14/331,434
(22) Filed: Jul. 15, 2014
(65) Prior Publication Data
US 2015/0026654 A1l Jan. 22, 2015
Related U.S. Application Data
(63) Continuation of application No. 12/615,184, filed on
Nov. 9, 2009, now Pat. No. 8,819,599.
(60) Provisional application No. 61/112,396, filed on Now.
7,2008.
(51) Imt.ClL
GO6F 17/50 (2006.01)
(52) US.CL
CPC GO6F 17/5045 (2013.01); GO6F 17/504

(2013.01); GOG6F 2217/62 (2013.01)

(58) Field of Classification Search
CPC GO6F 1/10; GOG6F 2217/62; GO6F 17/5045
USPC oo 716/106-108, 111-113
See application file for complete search history.

(56) References Cited
U.S. PATENT DOCUMENTS
2005/0273735 Al* 12/2005 Dargelascccocevvveeenenn 716/4

2008/0134115 Al
2010/0146468 Al

6/2008 Ly etal.
6/2010 Czeck et al.

* cited by examiner

Primary Examiner — Paul Dinh
(74) Attorney, Agent, or Firm — Plumsea Law Group, LL.C

(57) ABSTRACT

The invention provides for the hierarchical verification of
clock domain crossings. In various implementations of the
invention, a device design is partitioned into blocks. Subse-
quently, a block level clock domain crossing verification pro-
cess is performed on selected ones of the blocks. Verification
interface files are generated by the block level clock domain
crossing process. After which, a top level clock domain cross-
ing verification process is performed over the entire design. In
various implementations, the top level clock domain crossing
verification process utilizes the verification interface files to
verify clock domain crossing signals between blocks. Addi-
tionally, in some implementations, blocks not verified during
block level verification are verified during top level verifica-
tion. With some implementations of the invention, the device
design is partitioned based input from a user of the imple-
mentation. Furthermore, in various implementations, the spe-
cific clock domain crossing verification checks employed
during block level verification and top level verification are
specified by a user of the implementation.

19 Claims, 6 Drawing Sheets

0203
Identify Potential
Candidates For

Verificaiton.

" \

l

Identify A Clock Domain
Crossing Specification.

0205

|

0207
Identify Potential
Exceptions To
Verificaiton.

l

Identify Verification

0209

Metrics.

|

Identify A Verification

o211

Strategy.

US 9,117,044 B2

I NOId

Sheet 1 of 6

Aug. 25, 2015

U.S. Patent

x4’ ezl ezl Ll 6Ll
aoeLaU| 92IA3(] BIPSIAl 22In8(]
aodlAa INdinO 221Aa(1ndu
NJOMION a|qeAowSy eIpaA [Bondo
\m:
Ll 83lA8(Gl
obelo)s Alowop 80IA9(] obeIOIS
a|geAowdy Alows| paxi4 L Nvd
— Gol
601 WO Hnun buissesoud

101
Aowsy waisAg

10l €0l wun bunndwod

U.S. Patent Aug. 25, 2015 Sheet 2 of 6 US 9,117,044 B2

0203
Identify Potential
Candidates For

Verificaiton.

'

0205
Identify A Clock Domain
Crossing Specification.

l

0207
Identify Potential
Exceptions To
Verificaiton.

l

0209
Identify Verification
Metrics.

'

0211
Identify A Verification
Strategy.

201

FIGURE 2

U.S. Patent

Aug. 25,2015

Sheet 3 of 6

305
Device Design

0303
Identify Potential
Candidates For

Verification.

!

0307
Partition Device Design.

!

309
Partitioned
Device Design

!

Y

0311
Initiate Block Level CDC
Verification On The
Partitioned Device
Design.

!

315
Interface
Modeling Files

!

313
CDC
Violations

0317
Initiate Top Level CDC
Verification On The
Device Design.

FIGURE 3

US 9,117,044 B2

/ 301

US 9,117,044 B2

Sheet 4 of 6

Aug. 25, 2015

U.S. Patent

S 34NOIld v 33NOI4

3
i
§.
¥
%
3

]
S d i \\\\\MC\\»\\&

¥

L0 5555 05

U

i

Z
3 b
W\\\\\\\\\ 5

U.S. Patent Aug. 25, 2015 Sheet 5 of 6 US 9,117,044 B2

N

D

7

o

>

R,
Ry ar)

&

.
-
B
N

A,

FIGURE 7

o)
et
3!
—
o
@1
-%C.) \ w
o — © ®
E = < =] o ” L
o ® 20 o % @ o
0L c = < Q ‘o Q2
x5 Qo0 S ce LT 8
NG G M~ = XS = o]
oo g o ® o8 o= LE :
Naw—PN SO ©Q g [©aoft [P k£
O Ol (ONEN = O®7o ®©8F
< @2 = 85 %) o Cg
25 53> E g 23 - ™
=% = g5 8= o
O = O
=0 o \

U.S. Patent Aug. 25, 2015 Sheet 6 of 6 US 9,117,044 B2

801

807 815
/

809

811

813

901

. FIGURE 8

Clock Information
Heet ode cleck okl
-

Heet ode clock olk2

HPort Information
iiset_cdc port domain dl -clock okl
feet cde port_demisn ol out -combo_path clil
#set_cde port_domam ouwt -cleck okl -combe logic

FIGURE 9

US 9,117,044 B2

1
HIERARCHICAL VERIFICATION OF CLOCK
DOMAIN CROSSINGS

RELATED APPLICATIONS

This application is a continuation of U.S. patent applica-
tion Ser. No. 12/615,184, filed on Nov. 9, 2009, which claims
priority under 35 U.S.C. §119 to U.S. Provisional Patent
Application No. 61/112,396, entitled “Hierarchical Verifica-
tion Of Clock Domain Crossings,” naming Ka-Kei Kwok et
al. as inventors, and filed Nov. 7, 2009, which application is
incorporated entirely herein by reference.

FIELD OF THE INVENTION

The invention relates to the field of electronic device design
and verification. More specifically, various implementations
of the invention relate to verification of clock domain cross-
ings.

BACKGROUND OF THE INVENTION

Electronic circuits, such as integrated microcircuits, are
used in a variety of products, from automobiles to micro-
waves to personal computers. Designing and fabricating
microcircuit devices typically involves many steps, some-
times referred to as the “design flow.” The particular steps of
a design flow often are dependent upon the type of microcir-
cuit, its complexity, the design team, and the microcircuit
fabricator or foundry that will manufacture the microcircuit.
Typically, software and hardware “tools” verify the design at
various stages of the design flow by running software simu-
lators and/or hardware emulators. These steps aid in the dis-
covery of errors in the design, and allow the designers and
engineers to correct or otherwise improve the design. These
various microcircuits are often referred to as integrated cir-
cuits (IC’s).

Several steps are common to most design flows. Initially,
the specification for a new circuit is transformed into a logical
design, sometimes referred to as a register transfer level
(RTL) description of the circuit. With this logical design, the
circuit is described in terms of both the exchange of signals
between hardware registers and the logical operations that are
performed on those signals. The logical design typically
employs a Hardware Design Language (HDL), such as the
Very high speed integrated circuit Hardware Design Lan-
guage (VHDL). The logic of the circuit is then analyzed, to
confirm that it will accurately perform the functions desired
for the circuit. This analysis is sometimes referred to as “func-
tional verification.”

After the accuracy of the logical design is confirmed, it is
converted into a device design by synthesis software. The
device design, which is typically in the form of a schematic or
netlist, describes the specific electronic devices (such as tran-
sistors, resistors, and capacitors) that will be used in the
circuit, along with their interconnections. This device design
generally corresponds to the level of representation displayed
in conventional circuit diagrams. The relationships between
the electronic devices are then analyzed, often mathemati-
cally, to confirm that the circuit described by the device
design will correctly perform the desired functions. This
analysis is sometimes referred to as “formal verification.”
Additionally, timing verifications are often made at this stage,
by for example simulating the various clocks employed to
drive the device.

Once the components and their interconnections are estab-
lished, the design is again transformed, this time into a physi-

15

20

25

40

45

50

55

65

2

cal design that describes specific geometric elements. This
type of design often is referred to as a “layout” design. The
geometric elements, which typically are polygons, define the
shapes that will be created in various layers of material to
manufacture the circuit. Typically, a designer will select
groups of geometric elements representing circuit device
components (e.g., contacts, channels, gates, etc.) and place
them in a design area. These groups of geometric elements
may be custom designed, selected from a library of previ-
ously-created designs, or some combination of both. Lines
are then routed between the geometric elements, which will
form the wiring used to interconnect the electronic devices.
Layout tools (often referred to as “place and route” tools) are
commonly used for both of these tasks.

As indicated, device verification often takes place prior to
the actual manufacturing of the device. As a result, hardware
description languages are typically employed to model the
hardware and act as an embodiment for testing purposes.
However, testing and verification of physical devices also
occurs after manufacturing. For purposes of brevity and clar-
ity, a distinction between verification at the design level and at
the physical level is not always made in the balance of this
disclosure. Furthermore, the term device may be used inter-
changeably to refer to a physical embodiment of the device as
well as to models or other representations of the device.
Clock Domain Crossing Verification

As stated, verification of the timing of a device often takes
place during device development. The speed with which com-
ponents in a circuit process signals is dictated or “driven” by
a clock. Modern circuits may have multiple clocks. For
example, a modern microprocessor may have a clock that
allows for performance at maximum speed as well as a second
clock that allows the device to perform at a reduced speed.
Due to the flexibility of modern designs, multiple clocks are
often required. The number of clocks in a given design is
further increased by the fact that modern circuits are decreas-
ing in size exponentially, which has allowed designers to add
an increased number of circuit components into a design of a
given size. This is especially true in the realm of System-on-
Chip (SOC) devices.

A System-on-Chip is a microcircuit device that contains
blocks or “systems” for performing various tasks, packaged
as a single device. System-on-Chip devices are prevalent in
modern electronics, such as cell-phones, digital video disk
(DVD) players, video game consoles, household appliances,
automobiles, and telecommunications equipment. Typically,
a System-on-Chip is composed of blocks specifically
designed to perform a particular task. These blocks are all
interconnected by some communication structure, such as a
shared communication bus or even a Network-on-Chip
(NoC).

The components or blocks of a circuit are driven by a
particular clock or a particular clock frequency. A clock hav-
ing a particular frequency or speed is often referred to as a
clock domain. More particularly, a clock domain is a circuit
component or group of components driven by a clock or even
a group of clocks that have a fixed phase relationship to each
other. Clocks that are asynchronous to each other belong to
different clock domains. Similarly, components driven by
asynchronous clocks are said to belong to different clock
domains.

Electronic signals may originate from one clock domains
and be conveyed or transferred to a different clock domain, by
for example signal sampling. A signal that originates in a
different clock domain than it is received in, is said to be a
clock domain crossing (CDC) signal. Designs where multiple
clock domain crossings occur have historically been difficult

US 9,117,044 B2

3

for designers to verify. Traditionally, clock domain crossing
verification techniques consisted of either verifying clock
domain crossing signals during static timing analysis (STA)
or by running gate-level simulations. Traditional clock
domain crossing verification is discussed in detail in The
Anomalous Behavior of Flip-Flops in Synchronizer Circuits,
by W. Fleischhammer and O. Dortok, IEEE Transactions on
Computers, Vol. 28, pp. 273-276, 1979, Synthesis and Script-
ing Techniques for Designing Asynchronous Clock Designs,
by C. Cummings, SNUG, 2001, and Fourteen Ways to Fool
Your Synchronizers, by R. Ginosar, ASYNC, 2003, which
articles are incorporated entirely herein by reference.

As the number of clock domain crossing signals within a
design grows (modern designs may contain or more clock
domain crossing signals), traditional techniques are often
insufficient to completely verify the clock domain crossings
within a device design. Traditional techniques often fail to
provide exhaustive coverage of clock domain crossing viola-
tions for designs of this magnitude. Furthermore, traditional
techniques are dependant on the quality of the simulation
vector provided by the verification engineer. Another draw-
back to traditional techniques is that clock domain crossing
violations, often referred to as “bugs” in the design, are found
at a late stage of verification and design development. Bugs
are very costly to fix at this stage of the design, as designers
must again perform all the steps necessary to generate and
verify a gate-level netlist from a register transfer level netlist.

Some clock domain crossing techniques that go beyond
static timing analysis and gate-level simulation have been
proposed. These are discussed in Using Assertion-Based Veri-
fication to Verify Clock Domain Crossing Signals, by Chris
Kwok et al, DVCon, 2003, Verifying Synchronization in
Multi-Clock Domain SoC, by T. Kapschitz, DVCon, 2004,
and Designing a Safe Multi-Clock Chip with Clock Intent
Verification, by 1. Littlefield, DVCon, 2004, which articles
are incorporated entirely herein by reference. However, these
techniques are still insufficient to perform exhaustive clock
domain crossing verification. This is especially true for large
designs, where the number of clock domain crossing signals
is increasing exponentially in parallel with the increasing
number of clock domains. Particularly troubling is the fact
that multiple iterations of verification and error correction in
the design flow are required to completely resolve all clock
domain crossing violations.

SUMMARY OF THE INVENTION

The invention provides for the hierarchical verification of
clock domain crossings. In various implementations of the
invention, a device design is partitioned into blocks. Subse-
quently, a block level clock domain crossing verification pro-
cess is performed on selected ones of the blocks. Verification
interface files are generated by the block level clock domain
crossing process. After which, a top level clock domain cross-
ing verification process is performed over the entire design. In
various implementations, the top level clock domain crossing
verification process utilizes the verification interface files to
verify clock domain crossing signals between blocks. Addi-
tionally, in some implementations, blocks not verified during
block level verification are verified during top level verifica-
tion. With some implementations of the invention, the device
design is partitioned based upon input from a user of the
implementation. Furthermore, in various implementations,
the specific clock domain crossing verification checks

10

15

20

25

30

35

40

45

50

60

65

4

employed during block level verification and top level veri-
fication are specified by a user of the implementation.

BRIEF DESCRIPTION OF THE DRAWINGS

The present invention will be described by way of illustra-
tive embodiments shown in the accompanying drawings in
which like references denote similar elements, and in which:

FIG. 1 shows an illustrative computing environment;

FIG. 2 illustrates a clock domain crossing verification
methodology;

FIG. 3 illustrates a clock domain crossing verification
method according to various implementations of the inven-
tion;

FIG. 4 illustrates an electronic device design;

FIG. 5 illustrates the electronic device design of FIG. 4,
shown in alternative detail;

FIG. 6 illustrates a portion of the method shown in FIG. 3,
in greater detail;

FIG. 7 illustrates the electronic device design of FIG. 4,
shown in alternative detail;

FIG. 8 illustrates a device design; and

FIG. 9 illustrates an interface modeling file corresponding
to the device design of FIG. 8 that may be utilized in various
implementations of the present invention.

DETAILED DESCRIPTION OF ILLUSTRATIVE
EMBODIMENTS

Although the operations of the disclosed implementations
may be described herein in a particular sequential order, it
should be understood that this manner of description encom-
passes rearrangements, unless a particular ordering is
required by specific language set forth below. For example,
operations described sequentially may in some cases be rear-
ranged or performed concurrently. Moreover, for the sake of
simplicity, the illustrated flow charts and block diagrams
typically do not show the various ways in which particular
methods can be used in conjunction with other methods.
Additionally, the detailed description sometimes uses terms
like “determine” to describe the disclosed methods. Such
terms are often high-level abstractions of the actual opera-
tions that are performed. The actual operations that corre-
spond to these terms will vary depending on the particular
implementation and are readily discernible by one of ordinary
skill in the art.

Furthermore, in various implementations of the invention,
a mathematical model may be employed to represent an elec-
tronic device. With some implementations, a model describ-
ing the connectivity of the device, such as for example a
netlist, is employed. Those of skill in the art will appreciate
that the models, even mathematical models represent real
world device designs and real world physical devices.
Accordingly, manipulation of the model, even manipulation
of the model when stored on a computer readable medium,
results in a different device design. More particularly,
manipulation of the model results in a transformation of the
corresponding physical design and any physical device ren-
dered or manufactured by the device design. Additionally,
those of skill in the art can appreciate that during many
electronic design and verification processes, the response of a
devices design to various signals or inputs is simulated. This
simulated response corresponds to the actual physical
response the device would have to these various signals or
inputs.

Some of the methods described herein can be implemented
by software stored on a computer readable storage medium,

US 9,117,044 B2

5

or executed on a computer. Additionally, some of the dis-
closed methods may be implemented as part of a computer
implemented electronic design automation (EDA) tool. The
selected methods could be executed on a single computer or a
computer networked with another computer or computers.
For clarity, only those aspects of the software germane to
these disclosed methods are described; product details well
known in the art are omitted.

Iustrative Computing Environment

As the techniques of the present invention may be imple-
mented using software instructions, the components and
operation of a generic programmable computer system on
which various implementations of the invention may be
employed is described. Accordingly, FIG. 1 shows an illus-
trative computing device 101. As seen in this figure, the
computing device 101 includes a computing unit 103 having
a processing unit 105 and a system memory 107. The pro-
cessing unit 105 may be any type of programmable electronic
device for executing software instructions, but will conven-
tionally be a microprocessor. The system memory 107 may
include both a read-only memory (ROM) 109 and a random
access memory (RAM) 111. As will be appreciated by those
of ordinary skill in the art, both the read-only memory (ROM)
109 and the random access memory (RAM) 111 may store
software instructions for execution by the processing unit
105.

The processing unit 105 and the system memory 107 are
connected, either directly or indirectly, through a bus 113 or
alternate communication structure, to one or more peripheral
devices. For example, the processing unit 105 or the system
memory 107 may be directly or indirectly connected to one or
more additional devices; such as a fixed memory storage
device 115, for example, a magnetic disk drive; a removable
memory storage device 117, for example, a removable solid
state disk drive; an optical media device 119, for example, a
digital video disk drive; or a removable media device 121, for
example, a removable floppy drive. The processing unit 105
and the system memory 107 also may be directly or indirectly
connected to one or more input devices 123 and one or more
output devices 125. The input devices 123 may include, for
example, a keyboard, a pointing device (such as a mouse,
touchpad, stylus, trackball, or joystick), a scanner, a camera,
and a microphone. The output devices 125 may include, for
example, a monitor display, a printer and speakers. With
various examples of the computing device 101, one or more
of the peripheral devices 115-125 may be internally housed
with the computing unit 103. Alternately, one or more of the
peripheral devices 115-125 may be external to the housing for
the computing unit 103 and connected to the bus 113 through,
for example, a Universal Serial Bus (USB) connection.

With some implementations, the computing unit 103 may
be directly or indirectly connected to one or more network
interfaces 127 for communicating with other devices making
up a network. The network interface 127 translates data and
control signals from the computing unit 103 into network
messages according to one or more communication proto-
cols, such as the transmission control protocol (TCP) and the
Internet protocol (IP). Also, the interface 127 may employ
any suitable connection agent (or combination of agents) for
connecting to a network, including, for example, a wireless
transceiver, a modem, or an Ethernet connection.

It should be appreciated that the computing device 101 is
shown here for illustrative purposes only, and it is not
intended to be limiting. Various embodiments of the invention
may be implemented using one or more computers that
include the components of the computing device 101 illus-
trated in FIG. 1, which include only a subset of the compo-

10

15

20

25

30

35

40

45

50

55

60

65

6

nents illustrated in FIG. 1, or which include an alternate
combination of components, including components that are
not shown in FIG. 1. For example, various embodiments of
the invention may be implemented using a multi-processor
computer, a plurality of single and/or multiprocessor comput-
ers arranged into a network, or some combination of both.
Clock Domain Crossing Verification

As stated above, modern electronic designs typically have
multiple asynchronous clocks, resulting in multiple clock
domains and clock domain crossing signals. The most com-
mon problem associated with clock domain crossings is
metastability. Metastability may result when a clock domain
crossing signal violates a setup or hold time. More particu-
larly, due to the clock domain crossing signal violating the
setup or hold time, the output will “sit” at an intermediate
voltage level and eventually settle on either the high or low
voltage level randomly. Accordingly, verification of these
different clock domain crossings is required to ensure that the
design is free from problems, such as, for example, metasta-
bility associated with the clock domain crossings.

Five Part Clock Domain Crossing Verification Methodol-
ogy

Some clock domain crossing verification processes follow
a five step methodology. FIG. 2 illustrates a five step clock
domain crossing verification methodology 201. As can be
seen from this figure, the methodology 201 includes an opera-
tion 203 for identifying potential candidates for verification.
In various implementations, the operation 203 identifies por-
tions of an electronic device design that have multiple asyn-
chronous clocks. With some implementations, the operation
203 identifies portions of an electronic device design desig-
nated for verification by a verification engineer. With some
implementations, it is advantageous that the operation 203 be
directed to identify portions of the electronic device design
with which the verification engineer has a thorough under-
standing, as this may increase the exhaustiveness of the clock
domain crossing verification process.

The method 201 additionally includes an operation 205 for
identifying a clock domain crossing specification. The clock
domain crossing specification details the operational modes
of'the clock domains, the structure of the clocks and the clock
domains, the signals that interface between the different clock
domains, and the clock domain synchronization rules. Addi-
tionally, a clock domain crossing specification may detail the
legal and illegal clock domain crossing schemes. Typically, a
clock domain crossing specification is written in a hardware
description language, such as, for example, Verilog.

As can be seen, the method 201 further includes an opera-
tion 207 for identifying potential exceptions to verification. In
various implementations, it is not necessary to verify some
clock domain crossings, or some clock domain crossing sig-
nals. For example, clock domain crossing signals that are
stable during the entire operation of the electronic device
design often do not need synchronization. This is especially
true for configuration registers, status registers, or software
programmable registers. As a result, it may be desirable to not
perform clock domain crossing verification on these signals.

An operation 209 for identifying verification metrics and
an operation 211 for identifying a verification strategy are
also included in the method 201. With some implementations,
the operation 209 for identifying verification metrics identi-
fies benchmarks that may be utilized to determine if the
“goals” associated with the clock domain crossing verifica-
tion process are achieved. Similarly, m some implementa-
tions, the operation 211 for identifying a verification strategy
may identify a particular method of verification, such as, for

US 9,117,044 B2

7

example, block-level verification, top-level verification, bug
hunt and triage, or targeted coverage verification.

Hierarchical Clock Domain Crossing Verification

Various implementations of the invention incorporate the
five step clock domain crossing verification methodology
shown in FIG. 2 into a hierarchical verification method. FIG.
3 illustrates a hierarchical verification method that may be
provided according to various implementations of the present
invention. As can be seen from this figure, the method 301
includes the operation 303 for identifying portions of a device
design 305 to verify. The operation 303, similar to the opera-
tion 203, may identify portions of the device design 305 that
have been designated for verification by a verification engi-
neer.

The method 301 further includes an operation 307 for
partitioning the device design 305. In various implementa-
tions of the invention, the operations 307 divides the portions
of the device design 305 identified by the operation 303 into
two groups, a block level group and a top level group, result-
ing in a partitioned device design 309. With some implemen-
tations, the partitioning is based upon designations made by a
verification engineer. For example, FIG. 4 illustrates a device
design 401. As can be seen from this figure, the device design
401 includes a plurality of portions 403. Often, these various
portions are referred to as components or “blocks” or the
device design 401. As detailed above, in various implemen-
tations, ones of the plurality of portions 403 are identified as
candidates for verification, for example, by the operation 303.
Subsequently, the device design 401 is partitioned into block
level components and top level components, for example, by
the operation 307. FIG. 5 illustrates a partitioned device
design 501, which is the device design 401, having been
partitioned into groups. As can be seen from this figure, the
partitioned device design 501 includes the plurality of com-
ponents 403. However, they are now grouped into block level
components 503 and top level components 505.

Returning to FIG. 3, the method 301 further includes an
operation 311 for initiating a block level clock domain cross-
ing verification process on the partitioned device design 309.
As shown, one or more clock domain crossing violations 313
may be reported by the block level clock domain crossing
verification process. Furthermore, as illustrated, a set of inter-
face modeling files 315 are generated by the operation 311. In
various implementations, the operation 311 causes a clock
domain crossing verification process to be performed on the
block level components 503. FIG. 6 illustrates a method 601
for initiating a block level clock domain crossing process.
With some implementations, the operation 311 performs the
method 601. As can be seen from FIG. 6, the method 601
includes the operation 205 for identifying a clock domain
crossing specification and the operation 207 for identifying
potential exceptions to clock domain crossing verification. As
stated above, the operation 205 and the operation 207, respec-
tively, identify the structure and operation of the clock
domain crossings and any clock domain crossing signals that
do not need to be verified.

The method 601 also includes an operation 603 for causing
clock domain crossing checks to be performed on the block
level components, such as, for example, the components 503.
In various implementations, a verification tool, such as, for
example, the 0-In CDC tool, available from Mentor Graphics
Corporation, of Wilsonville, Oreg., is utilized to perform the
verification. With various implementations, a formal clock
domain crossing verification process is carried out. For
example, in some implementations, the operation 603 causes
the verification process described in U.S. patent application
Ser. No. 12/559,343, entitled “Formal Verification of Clock

10

15

20

25

30

35

40

45

50

55

60

65

8

Domain Crossings, filed Sep. 14, 2009, and naming Ka-Kei
Kwok et al. as inventors, which application is incorporated
entirely herein by reference, to be carried out. Subsequently,
the method 601 includes an operation 605 for generating the
interface modeling files 315.

With some implementations, the operation 605 generates
an interface modeling file for each of the block level compo-
nents 503. Typically, the interface modeling files 315 are text
files, which describe clock domain crossing information spe-
cific to each component block. For example, an interface
modeling file may contain information specifying the clock
domain for each port within the component block. In alterna-
tive implementations, the interface modeling files 315 are
provided by a verification engineer. Accordingly, the inter-
face modeling files 315 are instantiated prior to clock domain
crossing verification, such as, for example, the verification
caused to be performed by the operation 603. Subsequently,
the operation 605 may modify the interface modeling files
315 based upon the verification. For example, if, during veri-
fication, it is detected that a particular port is connected to a
synchronizer inside the component block, this information
may be appended to the interface modeling file corresponding
to the component block. Alternatively, if it is detected that
synchronizer logic does not behave as a synchronizer, the
synchronizer information may be removed from the interface
modeling file.

Returning to FIG. 3, the method 301 also includes an
operation 317 for initiating a top level clock domain crossing
verification process on the device design 305. As can be seen
from this figure, the operation 317 may also report clock
domain crossing violations, which may be added to the set of
clock domain crossing violations 313. In various implemen-
tations, the operation 317 causes a clock domain crossing
verification process to be performed by a clock domain cross-
ing tool, such as, for example, the 0-In CDC tool mentioned
above. With various implementations, the operation 317
causes the clock domain crossing verification process to be
performed on the entire device design 305. FIG. 7 illustrates
a device design 701. As can be seen from this figure, the
device design 701 corresponds to the device design 401 and
501. The block level components 503 and the top level com-
ponents 505 are represented. As can be further seen, the block
level components 503 are represented by their corresponding
interface modeling files. Accordingly, the operation 317
causes the clock domain crossing verification process to be
performed on the top level components 505 and utilizes the
interface modeling files 315 to verify any clock domain cross-
ings between the top level components 505 and the block
level components 503.

Interface Modeling Files

As described, various implementations of the invention
utilize “interface modeling files” to carry out a hierarchical
clock domain crossing verification process. Accordingly,
various illustrative interface modeling files are described
herein. FIG. 8 shows a device design 801. As can be seen from
this figure, the device design 801 includes a multiplexer 803
and synchronizers 805. Furthermore, ports “d1” (i.e. 807) and
“d2” (i.e. 809), clocks “clkl (i.e. 811) and “clk2” (i.e. 813),
and outputs “out” (i.e. 815) and “clk_out” (i.e. 817) are
shown. FIG. 9 illustrates an interface modeling file 901,
which may be generated by various implementations of the
present invention, or which may be provided by a user of
various implementations of the invention.

As can be seen from FIG. 9, clock information and port
information corresponding to the device design 801 are
defined. For example, the command “set_cdc_clock” may be
used specify the clock ports for the device design 801. The

US 9,117,044 B2

9

command “set_cdc_port_domain” may be utilized to specify
particular constraints on the various ports. For example, as
can be seen in FIG. 9, the clock clk1 is specified as being the
sampling (sometimes referred to as the driving) clock for the
port d1, by the line “// set_cdc_port_domain d1 -clock clk1”
in the interface modeling file 901.

As detailed, the interface modeling files, such as the inter-
face modeling file 901, are used to describe or define the
characteristics of the component blocks 403. Illustrative con-
straints are detailed herein for brevity. However, although
various implementations of the invention may utilize the
detailed constraints, alternative implementations may not.
Furthermore, implementations may be provided that include
substitutions of the detailed constrains or include additions of
other constraints not detailed herein.

One illustrative constraint is the “clock” constraint, which
limits the sampling or driving clock for the port. Another
illustrative constraint is the “same_clock™ constraint, which
limits two or more ports to be within the same clock domain.
The same_clock constraint is typically used for a multiplexer
synchronization scheme, where inputs are properly synchro-
nized if they are in the same clock domain, but not all input
may be properly synchronized if they are in different clock
domains.

Another illustrative constraint is the “combo_logic” con-
straint. The presence of combinational logic between a reg-
ister and a synchronizer can lead to bugs at the input of the
synchronizer. These bugs might lead to metastability prob-
lems in the logic driven by the synchronizer. Accordingly, it
may be beneficial to specify those blocks having combinato-
rial logic on the fan-in or fan-out ports.

A third illustrative constraint is the “combo_path” con-
straint. When an output port has a pure combinational path to
an input port, the port domain of the output depends on the
port domain of the input. In general, the output is a function of
the input (to which it has a combinational path) and the
driving registers. Accordingly, the port domain of the output
often must be resolved based on the domains of the input and
its other driving registers. If all the domains are the same, then
the output gets the common domain; otherwise the output
should be treated as asynchronous to all the domains, and all
fan outs of this output need synchronization. The combo_path
constraint may be used to specify that a purely combinational
path exists from the input to an output.

This information may be leveraged by various implemen-
tations of the invention in two ways. First, if the input port is
connected to a clock, the combo_path constraint may be used
to continue the clock propagation from the output to which it
has a purely combinational path. Second, clock domains of
the output port may be resolved by the combo_path con-
straint. For example, a port that has a combinational path to an
input port with only one driver is within the same domain as
the driver. However, an output that has a combinational path
to an input port that is driven by two registers having different
clock domains may be inferred to be asynchronous, flagged
with the combo_path constraint, and as a result, all clock
domain crossings originating from the output port may be
treated as violations.

Another illustrative constraint is the “nosync™ constraint.
Nosync may be used on an input port, which is sampled by
different clocks.

CONCLUSION

As detailed above, the invention provides method and
apparatuses for the hierarchical verification of clock domain
crossings. In various implementations of the invention, a

15

40

45

55

10

device design is partitioned into blocks. Subsequently, a
block level clock domain crossing verification process is per-
formed on selected ones of the blocks. Verification interface
files are generated by the block level clock domain crossing
process. After which, a top level clock domain crossing veri-
fication process is performed over the entire design. In vari-
ous implementations, the top level clock domain crossing
verification process utilizes the verification interface files to
verify clock domain crossing signals between blocks. Addi-
tionally, in some implementations, blocks not verified during
block level verification are verified during top level verifica-
tion. With some implementations of the invention, the device
design is partitioned based input from a user of the imple-
mentation.

What is claimed is:

1. One or more computer-readable devices, having com-
puter executable instructions for performing hierarchical
verification of a device design, the computer executable
instructions enabling a computer to perform a set of prede-
termined operations comprising:

accessing a device design having a plurality of hardware

blocks;

designating hardware blocks having more than one clock

domain for a clock domain crossing verification;
forming a block-level group from designated hardware
blocks;

employing a computer to perform a block-level clock

domain crossing verification process on the block-level
group, the block-level clock domain crossing verifica-
tion process generating a plurality of block-level inter-
face models;

employing the computer to perform a top-level clock

domain crossing verification process to be performed on
the device design based in part upon the block-level
interface models; and

saving results of the top-level clock domain crossing veri-

fication process to a memory storage location.

2. The method of claim 1, wherein (a) the designated hard-
ware blocks are divided into a first plurality of hardware
blocks and a second plurality of hardware blocks, (b) the
block-level group is formed from the first plurality of hard-
ware blocks, and (¢) the method act of forming the block-level
group includes forming a top-level group from the second
plurality of hardware blocks.

3. The method of claim 1, wherein the predetermined
operation of employing a computer to perform a block-level
clock domain crossing verification process includes perform-
ing a clock domain crossing verification process on each
hardware block of the block-level group.

4. The method of claim 1, further comprising a predeter-
mined operation of saving results of the block-level clock
domain crossing verification process to a memory storage
location.

5. The method of claim 1, further comprising a predeter-
mined operation of saving each of the plurality of block-level
interface models to a memory storage location as a block-
level interface modeling file.

6. The method of claim 1, wherein one or more of the
plurality of block-level interface models specifies a plurality
of clock ports.

7. The method of claim 1, wherein one or more of the
plurality of block-level interface models specifies a plurality
of ports that are within the same clock domain.

8. The method of claim 1, wherein one or more of the
plurality of block-level interface models specifies an output
port having a pure combinational path to an input port.

US 9,117,044 B2

11

9. The method of claim 1, wherein one or more of the
plurality of block-level interface models specifies one of (a)
an input port having combinational logic on its fan-out, and
(b) an output port having combinational logic on its fan-in.

10. The method of claim 1, wherein one or more of the
plurality of block-level interface models specifies a sampling
clock for an input port.

11. One or more computer-readable devices, having com-
puter executable instructions for performing hierarchical
verification of a device design, the computer executable
instructions enabling a computer to perform a set of prede-
termined operations comprising:

accessing a device design having block level group of

design blocks and a top level group of design blocks,
each of the block level group and the top level group
including a plurality of asynchronous clocks;

initiating a clock domain crossing verification process for

one or more design blocks of the block level group to
generate interface modeling information;

initiating a clock domain crossing verification process for

the top level group utilizing the interface modeling
information to verify one or more clock domain cross-
ings between the block level group and the top level
group; and

reporting one or more clock domain crossing violations.

12. The method of claim 11, wherein the method act of
initiating a clock domain crossing verification process for one
or more design blocks of the block level group includes
initiating a clock domain crossing verification process for
each design block of the block level group.

13. The method of claim 11, further comprising a prede-
termined operation of saving the interface modeling informa-
tion to a memory storage location as one or more interface
modeling files.

14. The method of claim 11, further comprising a prede-
termined operation of modifying one or more interface mod-
eling files to include the interface modeling information.

15. The method of claim 11, further comprising a prede-
termined operation of saving, to a memory storage location,

25

30

12

the results of at least one of (a) the clock domain crossing
verification process initiated for the one or more design
blocks of the block level group, and (b) the clock domain
crossing verification process initiated for the top level group.
16. One or more computer-readable devices, having com-
puter executable instructions for performing hierarchical
verification of a device design, the computer executable
instructions enabling a computer to perform a set of prede-
termined operations comprising:
accessing a device design having a top level, a plurality of
design blocks, and a plurality of asynchronous clocks;

dividing the device design into a partitioned device design
having a block level group including one or more first
design blocks of the plurality of design blocks and a top
level group including one or more second design blocks
of the plurality of design blocks;

performing a clock domain crossing verification process

on each design block of the one or more first design
blocks to generate interface modeling information cor-
responding with the design block;

performing a clock domain crossing verification process

on the top level, each of the first design blocks being
represented by the corresponding interface modeling
information; and

reporting one or more clock domain crossing violations.

17. The method of claim 16, further comprising a prede-
termined operation of saving the interface modeling informa-
tion to a memory storage location as one or more interface
modeling files.

18. The method of claim 16, further comprising a prede-
termined operation of modifying one or more interface mod-
eling files to include the interface modeling information.

19. The method of claim 16, further comprising a prede-
termined operation of saving, to a memory storage location,
the results of at least one of (a) performing the clock domain
crossing verification process on each design block of the one
or more first design blocks, and (b) performing the clock
domain crossing verification process on the top level.

#* #* #* #* #*

